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Abstract 

Hydraulic fracturing process is an integrated part of the wellbore completions in unconventional reservoirs. 
Typically, the process is designed before executing the job, aiming at optimizing the final fracture geometry 
and increasing stimulated reservoir volume (SVR). The physics-based models used for designing purposes 
are typically built on several simplified assumptions and do not match the SRV estimates from field 
observations. This work proposes a data-driven and machine learning-based approach for estimating SRV 
in unconventional reservoirs.      

A dataset from the Marcellus Shale Energy and Environment Laboratory (MSEEL) project is used in this 
study. The model’s input data include stimulation parameters of 58 stages of two wells (MPI-3H and MPI-
5H). The model output consists of the size of the corresponding microseismic (M.S.) cloud to each stage. 
Because of the limited number of stages (58) and to make the predictions close to near-real-time, each stage 
and its corresponding M.S. events are broken into steps, each having unique operational parameters (e.g., 
proppant and fluid volume and injection rate, among other parameters). This approach helped us to increase 
the number of required samples for data-based modeling to 829 samples. A standard procedure, including 
data cleaning, normalization, exploratory data analysis, and input data split (20/80), is then applied to the 
data. This is followed by various machine learning algorithms used to predict SRV. The respective 
performances of different methods are compared against each other.    

Microseismic (M.S.) monitoring is commonly used to monitor fracture topology evolution over time during 
the fracturing process. The recorded M.S. clouds that are observed during the hydraulic fracturing process 
can give a rough estimate of the stimulated reservoir volume (SRV). In this approach, a volume (or area in 
2D) that encloses most of the M.S. events can be estimated at different time windows and used as the model 
output. All models were validated on the test set, and a good match was obtained. Our approach will be the 
first step toward real-time data-based modeling of “Dynamic SRV” or DSRV, which can be used to provide 
a better understanding of fracture propagation in unconventional reservoirs. It also can be used to optimize 
the well stimulation process before executing the job. Moreover, the developed model can be trained and 
used for other unconventional reservoirs. 
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The paper’s novelty is utilizing a data-based approach to estimate DSRV or changes in the SRV values 
using fracturing parameters that can help optimize the stimulation of unconventional reservoirs. Based on 
the model, we will give guidelines that will allow operators to design more efficient fracturing jobs for 
maximum recovery and monitor the effectiveness of the hydraulic fracturing process.  

Introduction 

Unconventional reservoirs play a central role in the increased US oil and gas production in the last decade. 
Developing these reservoirs depends mainly on multiple parameters such as formation properties, fluid 
type, and how the horizontal wells are drilled and fractured. Unlike the classical two-wing fracture models 
in higher permeability reservoirs, in tight formations filled with natural fractures, the induced fractures 
typically create a complex fracture network (Warpinski, 2008). As a result of the complex fracture network, 
estimating the extent of the stimulated reservoir using a conventional fracturing simulator is hard and often 
gives erroneous results. Stimulated reservoir volume (SRV) is a volume created during and after the 
fracturing process, representing the enhanced permeability zone contributing to hydrocarbon production. 
Microseismic monitoring is a method that has been extensively used to track the complex growth of 
fractures and estimate the SRV extent. This study proposes a data-driven approach using fracturing 
parameters as input to predict SRV in a near-time fashion. 

Physics-based modeling and data-based approaches are standard practices for building predictive models 
that can be used for many applications in the oil and gas industry, including but not limited to the 
forecastings the production and optimizing the completion design (e.g., Rezaei et al. 2019; Rezaei et al., 
2020; Sidiqqui et al., 2019). The physics-based approach includes analytical or numerical solutions to the 
problem and often is based on several simplifications. The most commonly used analytical and numerical 
models to predict the final geometry of the created fractures are listed by Adachi et al. (2007) and 
Lecampion et al. (2018). On the other hand, the data-based approach includes correlations, cross-plots, 
analog fields, etc., and depends heavily on data availability. The advantage of the physics-based models is 
that it gives better predictions for “unseen scenarios,” but often requires a significant number of parameters, 
and fails in several cases due to the uncertainties in in-situ rock and fluid properties. While the data-based 
approach does not require as many parameters yet may fail in extrapolation, it also requires a considerable 
amount of example data to train the models. These models have gained popularity in recent years due to 
the massive increase in the amount of produced data (big data). The produced data can be utilized to 
overcome the shortcomings of the data-based approach. Thus, it has now become feasible to train a data-
based model to create reliable tools that can be used for the prediction of oil and gas production. Data-based 
approaches can be grouped into two main classes: supervised learning and unsupervised learning. 
Supervised learning is building a function from a set of labeled input data, whereas unsupervised learning 
is used to find hidden structures of unlabeled data. The most popular data analysis approaches models are 
least-square regression, gradient descent, support vector regression, random forest, genetic algorithm, 
gradient boosting models, artificial neural network, self-organizing maps.   

Using artificial neural network (ANN) models and other machine learning models in the oil industry has 
increased in the last decade. The literature contains a wide variety of models, including supervised and 
unsupervised models. A comprehensive overview of neural networks and other soft computing techniques 
(namely fuzzy logic and genetic algorithms) in various oil and gas applications was provided by Aminzadeh 
and DeGroot (2006). More recently, a review of the commonly used data analytics models and their 
application in the oil and gas industry was presented by Mishra (2017). Usually, these studies are focused 
on predicting the production (6 months or 12 months). The following are a few examples of using the data-
driven approach in the oil and gas industry. Shelley et al. (2012) constructed an artificial neural network 
model to forecast production. Gupta (2014) used neural network (NN) and time series analysis techniques 
to predict shale gas wells’ performance in unconventional reservoirs. In their method, they used production 
data of the previous year as the inputs of the model. We expect the next generation of neural networks and 
other artificial intelligence tools utilization in exploration and production in general, including those in 



URTeC 5537  3 
 

shale resources, will involve integrating human and machine intelligence. This will help address the 
“SURE” challenge involving integrating data with many different Scales, Uncertainty, Resolution, and 
Environment (Aminzadeh, 2021). 

Nejad et al. (2015) used an ANN model to optimize the well-completion strategy of three operators in Eagle 
Ford Shale. Zhong et al. (2015) compared the performance of several methods, including Ordinary Least 
Square Regression (OLSR), Support Vector Regression (SVR), Random Forest (RF), and Gradient 
Boosting Model (GBM), on the Wolfcamp shale data set. They concluded that the Random Forest performs 
better in terms of prediction. Bhattacharya et al. (2016) used various supervised and unsupervised 
techniques on Bakken and Marcellus data sets to identify the geological trends. They found that the support 
vector machine (SVM) works better for lithofacies classification. Katz et al. (2016) presented a rock 
permeability forecast that used machine learning and Monte-Carlo committee machines to predict rock 
permeability.  
Mohaghegh (2016) presented a workflow for selection of refrac candidate selection using data analytics. A 
so-called “Shale Analytics” for using a data analysis approach for shale reservoirs was introduced later by 
the same author (Mohaghegh et al., 2017). Repchuk et al. (2018) developed a decision forest regression 
model to forecast production in the Denver Basin. Cai et al. (2018) proposed a nonparametric smoothing 
model to analyze the well performance in Bakken shale. Luo et al. (2018) built a predictive ANN model 
based on geologic inputs to forecast the production from Middle Bakken shale. Siddiqui et al. (2019) 
constructed several ANN models to predict different parameters such as oil API, most probable type of 
fluid, and first-year oil and gas production prediction from Eagle Ford Shale. Also, see Aminzadeh (2019) 
for many other utilization of neural networks and other machine learning techniques to improve the 
performance of different hydraulic fracturing operations. 

In this study, we present several machine learning models to address some challenging questions regarding 
the extent of the stimulated reservoir volume (SRV) in the Marcellus Shale Energy and Environment 
Laboratory (MSEEL). We aim at using the operational inputs that can be obtained before or during the 
wellbore stimulation job. The models presented in this study include KNN, AdaBoost, Random Forest, 
ANN, and a Stack model to predict the value of the SRV as a single scalar during and after the stimulation 
job. The models are constructed using the data from two wells in MSEEL. The following section provides 
a summary of the MSEEL project. After that, we describe the pre-processing and the steps we took to make 
the data ready for analysis.  This step is the most time-consuming part of the study. Then, in the Results 
section, we present the result of the five ML models. Also, the Discussion section contains a discussion on 
the parameters affecting the models’ performance and an approach toward predicting the evolution direction 
of SRV. Finally, the conclusions are summarized in the last section.    

Theory and Methods 

Hydraulic fracturing process typically is executed stage by stage from the toe of the horizontal to the heel, 
one stage at the time. At each stage, a certain amount of fracturing fluid is injected into the wellbore to 
break the rock and create new surfaces in the reservoir that can help increase the conductivity (k×w) and 
hydrocarbon flow toward the wellbore from the stimulated region. As a result of this injection and 
depending on several variables such as the amount of injected fluid, local stress in the rock, and natural 
fracture density and orientation of the natural fractures in the pay zone, different “stimulated reservoir 
volume (SRV)” sizes are generated. The SRV extent is usually tracked using three different methods, 
namely direct far-field techniques, direct near-wellbore techniques, and indirect fracture diagnostics 
(Cipolla and Wright, 2000). The direct far-field techniques are suited to give the global visual perspective 
about fracture growth and are conducted in a separate well. The two commonly used techniques for this 
type of fracture diagnostics are tiltmeter fracture mapping and microseismic fracture mapping. 
On the contrary, the second group of fracture diagnostics techniques is implemented in the same well and 
gives information about near-wellbore fracture parameters such as height and width and proppant 
placement. Finally, the most commonly used fracture diagnostics group is indirect fracture diagnostics. The 
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techniques used in this group can provide estimates about fracture conductivity, dimension, and stress. This 
group includes fracture design model optimization, pressure transient testing, and production data analysis 
(Cipolla and wright, 2000).  
The multi-stage hydraulic fracturing process simulation is a tedious task and requires high fidelity models 
for many reasons. However, with the abundant data that is being generated in the last decade, one may use 
a data-driven approach to estimate SRV and its evolution direction. In this study, we focused on the third 
method discussed above to estimate the extent of SRV in quasi-real-time. We use the available data that 
can be collected while or before performing hydraulic fracturing as our input. These variables include 
fracturing fluid type, rate, treating pressure, and proppant properties. On the output side, a volume enclosing 
the microseismic events (MSE) from hydraulic fracturing processes is estimated and used as the output 
variable. 
 
Used Dataset 
The dataset used in this study is from Marcellus Shale Energy and Environment Laboratory (MSEEL), an 
unconventional gas reservoir in North East of the U.S. The objective of the MSEEL project is to provide a 
long-term field site to develop and validate new knowledge and technology to improve recovery efficiency 
and minimize environmental implications of unconventional resource development. The project involves 
several universities, companies, and U.S research labs for evaluations in geology, geomechanics, 
completions, production, and completions areas. Figure 1 shows the subsurface and surface information of 
MSEEL. The project is located in Morgantown, WV. It consists of four horizontal wells, one vertical 
microseismic monitoring well, and five surface seismic locations. Out of the four horizontal wells in the 
site, we had access to fracturing and microseismic monitoring of wells MIP-3H and MIP-5H. Therefore, 
the data from these two wells were used for training and testing the ML models.  
 

(a) (b) 

Figure 1. Surface and subsurface information about the MSEEL project. (a) the surface location of the site. The field is located next to the 
Monongalia river in Morgantown, WV. It consists of four horizontal wells, one microseismic monitoring well (the dot between wells MIP-3H 

and MIP-5H), and five surface seismic stations (yellow dots). (b) Location and direction of the two wells used in this study. Figure adapted from 
Carr et al. (2019).   

 

The two wells are parallel to each other, and the monitoring well was drilled in the spacing between the 
wells, as shown in Figure 2. Well MIP-3H was stimulated by 28 stages, out of which 22 stages were 
monitored using microseismic monitoring. Also, well MIP-5H was fractured using 30 stages, and poor MS 
monitoring was available at stages greater than 22. Figure 2b shows the location of the MSE, colored by 
stage. 
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(a) (b) 

Figure 2. Schematic of the stages of the two MSEEL wells that were investigated in this study. (a) stages of the two wells (b) microseismic 
monitoring of the stages, color-coded by the stage number. 

 
Pre-Processing 
The pre-processing stage included converting the MSEEL reports from pdf format to MS Excel file and 
combining them as a single file. The variables include stage, step, step name, slurry volume (bbl), pump 
rate, pump time, cumulative pump time (new variable), fluid name, ramp up fluid, propp name, propp 
concentration, propp mass, average treating pressure, maximum treating pressure, and minimum treating 
pressure. Table 1 shows such a table and its variables for stage 5 of MIP-3H. In the table, the concept of 
steps is shown. Note that each step has unique properties. This approach helped us to: (1) increase the 
sample number to ~ 800, (2) apply a model that can predict the SRV volume in near real-time. Also, in 
order to relate the input variables at each step, a new variable called cumulative pump time is created in the 
table. This new variable will be used later to correlate the observed MS events to the pump schedule. 
 

Table 1. Input table generated from MSEEL stimulation reports. 

 
 

Table 2 shows the generated output table from the recorded microseismic events. The data contained the x, 
y, and z location of the events and their magnitude. However, the magnitudes were excluded from this study 
and will be used later for verifying the calculated SRV. Depending on the cumulative time from the input 
table, we created similar columns in the output table. Next, a wrapper file was created to loop through the 
stage, step, and cumulative time and find the corresponding MS events for that specific step.   
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Table 2. The generated table for microseismic. 

 
 

The result of this approach is a group of distinguished microseismic events for each step. Figure 3 shows 
an example of such grouping for MIP-3H stage 7. Note that the MS events are color-coded for each step 
(note: the steps are smaller time periods inside each stage). Also, note that two parameters are changing 
from a step to another step. These parameters are the extent of SRV and its intensity (i.e., the density of the 
MS events in the enclosed geometry). In this study, we only focus on estimating the extent of the SRV. 
However, it is critical to consider the intensity of the changes in the SRV. Another useful piece of 
information that can be obtained from the MS points in the plots is the direction of the SRV growth. For 
example, the direction of SRV growth is NW-SE and NE-SW in the 2D plots shown below. This can be 
further implemented to track the evolution of the SRV in near real-time. 

 
 

 
(a) (b) (c) 

Figure 3. Example of MS event observed in MIP-3H stage 7. The microseismic events are color-coded for each step (a time period with a unique 
fluid, ump and proppant properties inside a specific stage. Each stage could be divided into several steps) discussed above. In the picture, 3D and 

two 2D snapshots of the MS events are shown.  
 
The last step toward creating the output (i.e., DSRV) is to estimate a volume that encloses the MS events. 
For this purpose, a threshold may be devised that eliminated the isolated MS events and does not seem to 
contribute to the overall SRV estimations. In this study, we enclosed all points in an irregular geometry, 
and later in the cleaning data section, the samples with volumes that are much bigger than a certain threshold 
are removed from the dataset. Figure 4 shows two examples of the estimated SRV for MIP-3H stage 7 and 
MIP-5H stage 12. The volumes that are calculated as SRV are color-coded for the steps. 
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(a) (b) 

Figure 4. Example of the calculated SRV from MS events for two stages of MSEEL. (a) MIP-3H stage 7 (b) MIP-5H stage 12. 

 
Once the SRVs (or DSR) are known for each step, they were added back to the input table (Table 1) as a 
new column and used as our target variables. The next step toward building the ML models is to perform 
some exploratory data analysis to find the relationship between the input parameters and their relationship 
between the output parameters. This can be done in several ways. An example of such plots is shown in 
Figure 5.We started with all the15 variables that were available in the input table. As in the confusion 
matrix (Figure 5), several relationships were identified between the input samples. For example, average, 
max, min pressures have similar effects on the SRV, as highlighted with green boxes in the figure. Also, 
some of the variables seem to have linear correlation (see, for example, ramp-up fluid volume and slurry 
volume). Moreover, some of the inputs resulted in multiple SRVs (e.g., pump rate) and could negatively 
impact the model performance. Finally, some of the variables have outliers that needed to be removed. An 
example of this case is the estimated SRV, as explained previously. Some of the SRV values were 
considerably bigger than the others, indicating the non-productive MS events.  
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Figure 5. Confusion matrix of all the initial variables. The variables are color-coded for different wells. The variables of MIP-3H are shown by 
blue colors, and variables of MIP-5H are shown by orange color. 

 
As a result, some of the mentioned columns were removed from the input features, and some were corrected 
by removing outliers to avoid any model bias. Finally, eight parameters were selected from the analysis 
done in the previous step. The final input/output table is shown in Table 3. The parameter “well name” is 
selected metadata. The input columns that were used to create the models were a stage, step, slurry volume, 
pump time, pump time cumulative, propp concentration, propp mass, and average treating pressure. Note 
that some of the SRVs in the output column are zero, indicating no creation of SRV. Some of these rows 
with zero SRVwere also removed from the data, especially if they were located in the middle of the stage, 
where the pump rate and prop concentrations were maximum (it was assumed that the high injection rate 
should result in some SRV creation, especially if the steps before or after created SRV). The zero SRV can 
be related to an error in MS monitoring or not creating an SRV at all (smaller chance). 

 



URTeC 5537  9 
 

Table 3. The final set of input/output. 

 
 

After all the changes made on the initial data, a total of 582 samples were remained, from which 482 were 
selected for training and 100 samples were excluded for testing the performance of the models. It should 
also be noted that the data was shuffled and normalized to [0 1] interval before creating the ML models. 
A heat map of the selected input variables is shown in Figure 6. As can be seen, the parameters that affect 
the output parameters the most are slurry volume, pump time, prop mass, and the least affecting parameters 
are stage and prop concentration. Also, the relationship between pump time and slurry volume has strong 
correlation weights in modeling, as shown in the figure.  
 
 

 

Figure 6. Heat map of the final variables after removing the problematic parameters.  

Results 

Several machine learning models were trained and tested on the data. The models were AdaBoost, KNN, 
Random Forest, ANN, and a stack algorithm. The stack algorithm included Random Forest, KNN, 
AdaBoost models as input learners, and Ridge Regression as the output learner. The created models’ 
performances on the training set, including 482 samples, are shown in Figure 7. The x-axis on the plots 
shows the predicted values of the SRV, and the y-axis shows the original value from the test set. Also, the 
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line on the plots shows the R-Square of each model. Moreover, the points are color-coded based on the well 
number. As can be seen, the r-square for AdaBoost, KNN, and stack is 1 for the train set, while Random 
Forest and ANN have r-squares of 0.96 and 0.85 (overall). All models perform slightly better on the well 
MIP-3H compared with MIP-5H. The reason for this is that the number of data samples in MIP-5H was 
smaller, and also there was an error for several points in the middle stages. More discussions will be 
provided on this point in the discussion section.  

 

(a) (b) (c) 

  

                                    (d) 

 

                           (e) 

Figure 7. The model performances on the training data. (a) AdaBoost (b) KNN (c) Random Forest (d) ANN (e) Stack. The x-axis in the plots 
shows the predicted values by the models, and the y-axis represents the actual values. 

 

The test data included 100 data samples from both wells. Figure 8 shows the model performance of the 
models on the test set. As expected, the performance is lower on the test model. Again, the results are color-
coded for the well number and show that the model performance is better in general for MIP-3H. The 
overall r-square for test sets are 0.69, 0.60, 0.68, 0.72, and 0.64 for AdaBoost, KNN, Random Forest, and 
Stack models, respectively. As can be seen, among all models, ANN had a better performance on the test 
set with 0.72 r-square. The performance of the model may be improved by adding more training samples 
and details about the target formation properties. For example, having an idea about the distribution, 
density, and orientation of natural fractures may be helpful for predicting SRV. It should be noted that one 
reason for lower overall r-squares is the lower performance on well MIP-5H, which is caused by the poor 
prediction of six points. The points are highlighted in the figure with a yellow shaded area. The reason for 
this weak performance could be an error in data collection or weak engineering or execution of the 
fracturing job in that stage. In order to further investigate the reason behind models’ weak performances on 
these six points, we performed another investigation on the mentioned points, and the results are discussed 
next. Note that other metrics may be used to evaluate the performances of the models, but they have been 
skipped in this study.  
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(a) (b) (c) 

 

                                      (d) 

 

                          (e) 

Figure 8. Models’ performances, (a) AdaBoost (b) KNN (c) Random Forest (d) ANN (e) Stack. The x-axis in the plots shows the predicted values 
by the models, and the y-axis represents the actual values. 

 

To further investigate the reason for the weak performance of the models, the results are plotted as a 
function of three variables, namely stage number, step, and proppant concentration. For this purpose, we 
arbitrarily selected the AdaBoost model. However, the six points were observed in other models as well. 
Figure 9 shows the results for the three selected variables. In this presentation, the size of each bubble 
represents the magnitude of the selected variable. For example, a bigger circle means that the stage number 
is bigger (i.e., closer to the heel). Figure 9a shows the results for stage number. As can be seen, the miss-
predicted points are all from the stage in the middle of the well. It can also be concluded that the steps in 
five of the points are toward the end of the fracturing job for that specific stage, where the pump rates and 
proppant concentrations were highest. A look at Figure 9 confirms this observation. In that figure, five of 
the miss-predicted points were from high proppant concentrations. More investigations may be done to 
further analyze the reason behind the poor model performance in these six points.  

 

(a) (b) (c) 

Figure 9. Further analysis of the models’ weak performances on well MIP-5H. (a) circle size: stage (b) circle size: step (c) circle size: proppant 
concentration. The x-axis in the plots shows the predicted values by the models, and the y-axis represents the actual values. 
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Discussion 

Two types of variables control the created SRV: namely, operational parameters and rock geomechanical 
and mineralogical variables. Operational parameters include parameters such as the pump schedule (e.g., 
duration, rate), recorded pressure, and perforation design. Rock-related parameters include rock 
mineralogy, stress state, natural fractures’ properties such as density and orientation relative to the wellbore 
direction, and layer height in the pay zone, and so forth. In this study, we only limited ourselves to the 
operational parameters because of limited data availability. Including the rock-related parameters will 
improve the performance of the models. Also, the number of examples that we worked with was relatively 
small (580), and it is expected that adding more examples will improve the performance. Another approach 
that one may take to improve the performance of these models is to apply some unsupervised learning 
algorithms to the data. As an example, Figure 10 shows the result of the self-organizing map on different 
properties. The algorithm can be used to cluster the input data based on some variables. In the figure, the 
algorithm is applied to mesh size, fluid type, and proppant concentration. As can be seen, for example, in 
Figure 10b, the samples with WF115 seem to have similar behavior. Also, when the proppant concentration 
is less than one bb/gal (Figure 10c), the points show similar behavior. This clustering helps to further 
decrease the model errors. 

 

(a) (b) (c) 

Figure 10. Clustering the data using a self-organizing map (SOM), unsupervised learning algorithm. (a) proppant size (b) fluid type (c) proppant 
concentration.  

 

Another parameter that was ignored in this study was MS events magnitude. The magnitude of the events 
plays a role in the intensity of permeability changes in the stimulated zone. In future studies, this property 
will be included in our models. Also, one important aspect of SRV evolution in the direction of the 
evolution. Obviously, the fractures will not always propagate in a symmetrical fashion. The fracture 
propagation direction can be affected as a result of stress shadowing from previous steps or layer 
confinement in height. Another idea to further address the evolution direction of SRV is the quadrant idea. 
In this approach, a sphere (in 3D) is divided into multiple equal size quadrants. Suppose the frac fluid is 
injected at the point center of a sphere, and the reservoir rock is uniformly diffusive to fluids expanding 
radially. In that case, the sphere can be a proxy shape for isotropic, homogenous reservoir rock. However, 
this is not always the case. Figure 11 shows the quadrant idea. In this approach, one needs to start with a 
small circle centered at the wellbore (Figure 11b). At each step, a new circle is drawn from the same center 
with a bigger radius. By tracking the number of points in each quadrant, one may estimate the evolution 
direction of SRV. For example, more points are located in the three quadrants of NE, NE, and SW. 
Therefore it may be concluded that the SRV is blocked from propagating in the NW quadrant. A look at 
the design and location of the weels with geological data will be a helpful addition to this analysis to figure 
out the reason.  
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(a) (b) 

Figure 11. An algorithm for tracking the growth direction of SRV. 

 

Conclusions 

A data-driven approach was used to dynamically predict the stimulated reservoir volume (SRV) in this 
study. The SRV in this approach is called DSRV and can be used for real-time analysis of the SRV growth. 
In this approach, each hydraulic fracturing stage has been broken down into several steps, each having 
unique properties such as pump rate, proppant concentration, and average treating pressure. These 
properties were used in the input feature table. A data set from the MSEEL project, including 58 stages 
from two well (MIP-3H and 5H) were used. On the output side, we automatically created irregular 
geometrical shapes around each of the recorded microseismic clouds at each step and represented that as 
SRV. Then the time of each step was correlated to the SRV volume to create the required table for the 
model creation. Several machine learning models, including AdaBoost, KNN, ANN, Random Forest, and 
a stack algorithm, were implemented on the data. The models had an R-Square metric of [0.65 0.78] on the 
test data, which is an acceptable range for such a limited dataset. The performance of the models can be 
improved by adding more training examples (we only used ~500 samples). Models showed a weaker 
performance in the middle stages of MIP-5H that negatively impacted the overall performances. We 
proposed two approaches to estimate the evolution of SRV: volume prediction and quadrant. The volume 
prediction in real-time was presented in this study. In future models, we include the quadrant idea to 
estimate the growth direction of SRV. Model performances can be improved by adding more data samples 
and more information about the target formation. Also, in order to have a better estimation of SRV, 
magnitudes of the MS events will be included.  
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